

Carbohydrate Research 308 (1998) 153–159

Note

X-ray single crystal structure analyses of 5-deoxy-5-*C*-(alkylphosphinyl)-glucopyranose

Tatsuo Oshikawa^{a*}, Mitsuji Yamashita^a, Kuniaki Seo^b, Yoshihiro Hamauzu^b

^aDepartment of Materials Chemistry, Faculty of Engineering, Shizuoka University, Hamamatsu 432, Japan

^bDepartment of Material Sciences, Numazu College of Technology, Numazu 410, Japan

Received 15 September 1997; accepted in revised form 5 January 1998

Abstract

X-ray crystallographic analyses were performed on single crystals of 1,2,3,4-tetra-O-acetyl-5-deoxy-5-C-(isopropylphosphinyl)-D-ribopyranoses, 1,2,3,4-tetra-O-acetyl-5-deoxy-5-C-(isopropylphosphinyl)-D-xylopyranoses, and 1,2,4-tri-O-acetyl-5-deoxy-3-O-methyl-5-C-(phenylphosphinyl)-D-ribopyranoses. These compounds have the (R_P) configuration at the phosphorus atom with the 4C_1 conformation of the pyranose ring, and the conformation supported by NMR studies. © 1998 Elsevier Science Ltd. All rights reserved

Keywords: Phospha sugar; NMR; X-ray; Configuration; Conformation

In previous papers [1–4], we reported the syntheses of phospha sugars which were assigned as 1,2,3,4-tetra-O-acetyl-5-deoxy-5-C-(isopropylphosphinyl)- β , α -D-ribopyranoses **5a** and **5b**, 1,2,3,4-tetra-O-acetyl-5-deoxy-5-C-(isopropylphosphinyl))- β , α -D-xylopyranoses **7a** and **7b**, and 1,2,4-tri-O-acetyl-5-deoxy-3-O-methyl-5-C-[(R, S)-(phenylphosphinyl)- β -D-ribopyranoses **9a** and **9b**, however, the conformations of these compounds were not determined. Yamamoto et al had previously reported [5–9] the syntheses of phospha sugars, determination of the configuration at phosphorus in the six membered pyranoid rings, and the conformation of the heterocycles by 1 H NMR. The X-ray analyses

of phospha sugar analogs have also been reported by Luger et al [10–14]. We herein report the analyses of 5-deoxy-5-(alkylphosphinyl)-glucopyranoses **5**, **7**, and **9** by ¹H NMR (270 MHz) and X-ray crystallography.

1. Results and discussion

Methyl 5-deoxy-5-C-(ethoxyisopropylphosphin-yl)-2,3-O-isopropylidene- β -D-ribopyranoside **4**, 3-O-acetyl-5-deoxy-5-C-(ethoxyisopropylphosphin-yl)-1,2-O-isopropylidene- α -D-xylofuranose **6**, and 5-deoxy-1,2-O-isopropylidene-5-C-(methoxyphenylphosphinyl)-3-O-methyl- α -D-ribofuranose **8** were synthesized from methyl 5-deoxy-5-iodo-2,3-O-isopropylidene- β -D-ribofuranose **1**, 3-O-acetyl-5-

^{*} Corresponding author. e-mail: tctoshi@eng.shizuoka. ac.jp

deoxy-5-iodo-1,2-*O*-isopropylidene-α-D-xylofuranose **2** and 1,2-*O*-isopropylidene-3-*O*-methyl-α-D-ribo-pentadialdo-1,4-furanose **3**, respectively, in good yield. Treatment of compounds **4**, **6**, and **8** with sodium dihydrobis(2-methoxyethoxy)aluminate (SDMA) giving 5-deoxy-5-alkyl- or 5-deoxy-5-phenyl-phosphino derivatives followed by ringenlargement of these derivatives by the ring opening and closing two steps known procedure gave pyranose type phospha sugars **5**, **7**, and **9** in good yields (Scheme 1).

Determination of the absolute configuration at the phosphorus atom and the conformational analysis of the pyranoid ring were carried out for phospha sugars **5a**, **5b**, **7a**, **7b**, **9a**, and **9b** prepared previously [1–4]. The precise structures of these compounds were determined on the basis of the $270\,\mathrm{MHz}^{\,1}\mathrm{H}$ NMR spectra. The assignments of all signals were readily made employing first-order analysis with the aid of a decoupling technique. The results are summarized in Table 1. 4C_1 (D)

conformation for all pyranose type phospha sugar derivatives was established. In the case of sugar analogs 5a, 5b, 7a, and 7b the assignments were difficult, because the signals of Ha-5 and He-5 overlapped with acetyl groups, and H-1, H-2, and H-4 overlapped each other on the ¹H NMR spectra in CDCl₃. When the ¹H NMR measurements of **5a**, **5b**, **7a**, and **7b** were carried out in benzene- d_6 , the signals of H-1, H-2, H-4, H-5a, H-5e, and acetyl protons were separated from each other due to anisotropy of the solvent. In order to assign the ¹H NMR signals of phospha sugars **5a**, **5b**, **7a**, and 7b, the chemical shift differences of each proton signal and the dependence of various J values reflecting the dihedral angles on solvents used were carefully taken into consideration. The ¹H NMR spectral data of 5a, 5b, 7a, and 7b generally agree with the characteristic features of δ and J values for pyranose type phospha sugars occurring in an approximate 4C_1 (D) conformation (see Table 1). Namely, the quasi-axial orientation of the P = O

Scheme 1.

Table 1 ¹H NMR chemical shifts and coupling constants for phospha sugars 5, 7^a, and 9^b

Diaste	reomer					(Chemi	cal sh	ift (δ, 1	ppm)						
	H-1	H-2	H-3	H-4	H-5e	H-5a		AcO-	1,2,3,4	с	P-CH	P-C-Me	P-C-Me'			
5a 5b 7a 7b	5.23	5.72	5.43	5.50	2.56	1.79	1.69	1.68	1.67	1.65	1.26	0.74	0.89			
<u>5b</u>	5.67	5.64	5.44	5.38	1.79	1.64	1.50	1.45	1.42	1.39	1.26	0.71	0.65			
<u>7a</u>	5.50	5.66		5.37		1.61		1.46		1.37	1.42 ^{d)}	0.75	0.67			
<u>7b</u>	5.75	5.59	5.41	5.46	2.14	1.33 ^{c)}	1.50	1.47	1.45	1.36	1.10	0.58	0.65			
	H-1	H-2	H-3	H-4	He-5	Ha-5	MeO	A	cO-1,2	2,4 ^d	Ph(o)	Ph(m)	Ph(p)			
9a	6.27	4.83	3.83	4.96	2.87	2.82	3.63	2.06	2.12	2.13	7.75	7.51	7.60			
9 <u>a</u> 9 <u>b</u>	5.96	5.54	4.06	5.60	2.62	2.41	3.64	1.95	2.08	2.09	7.89	7.57	7.64			
	$J_{1,2}$	$J_{1,\mathrm{P}}$	$J_{2,3}$	$J_{2,\mathrm{P}}$	$J_{3,4}$	$J_{4,5{ m e}}$	$J_{4,5a}$	$J_{4,\mathrm{P}}$	$J_{5a,5a}$	$J_{5\mathrm{e,P}}$	$J_{5\mathrm{a,P}}$	$J_{5\mathrm{e},1}$	$J_{ ext{P-CH}}$	$J_{ m CH-Me}$	$J_{ ext{P-C-Me}}$	
5a	10.5	10.0	4.5	2.5	2.2	4.5	10.3	4.8	14.0	22.9	11.8	0	15.6	7.3	17.8	
<u>5b</u>	2.7	14.0	3.1	0.5	3.0	4.5	12.0	2.2	14.0	23.4	13.6	2.5	14.0	7.0	12.4	
7a	11.1	5.0	9.2	2.2	9.5	4.6	11.5	4.8	14.6	22.9	11.8	0	14.1	7.0	17.0	
5a 5b 7a 7b	2.7	14.4	10.5	0.5	10.1	4.6	12.6	2.2	14.3	23.4	13.6	2.2	14.3	7.3	14.6	
	$J_{1,2}$	$J_{1,\mathrm{P}}$	$J_{2,3}$	$J_{2,\mathrm{P}}$	$J_{3,4}$	$J_{4,5e}$	$J_{4,5a}$	$J_{4,\mathrm{P}}$	$J_{5\mathrm{e},5\mathrm{a}}$	$J_{5\mathrm{e,P}}$	$J_{5\mathrm{a,P}}$	$J_{\mathrm{P},o}$	$J_{\mathrm{P},m}$	$J_{\mathrm{P},p}$	$J_{o,m}$	$J_{m,p} \ J_{o,p}$
9a	11.6	11.9	3.2	5.8	2.4	3.8	10.5	5.4	15.1	18.4	17.5	11.8	3.3	1.7	7.7	7.7 1.5
<u>9a</u> <u>9b</u>	11.4	11.6	3.6	3.5	2.4	3.8	13.8	2.2	14.0	15.2	5.4	12.5	3.3	1.7	7.5	7.5 1.5

Table 2 Crystal and structure refinement for 5b, 7b, and 9b

	5b	7b	9b	
Molecular formula	$C_{16}H_{25}O_{9}P$	$C_{16}H_{25}O_{9}P$	$C_{18}H_{23}O_8P$	
Molecular weight	392.34	392.34	398.35	
Temperature (K)	293	293	293	
Crystal system	Monoclinic	Orthorhombic	Orthorhombic	
Space group	$P2_1$	$P2_12_12_1$	$P2_{1}2_{1}2_{1}$	
Unit cell dimentions (Å)	-			
a	8.8359	12.435	10.022	
b	9.180	16.412	22.337	
c	12.6117	10.105	8.796	
$eta(^{\circ})$	94.473			
Volume (Å ³)	1019.8	2062.2	1969.0	
Z (molecules/cell)	4	4	4	
Density (calculated, g cm ⁻³)	1.555	1.264	1.344	
Absorption coefficient (mm ^{−1})				
F(000)	832.0	832.0	840.0	
Crystal size (mm)	$0.2 \times 0.2 \times 0.3$	$0.2 \times 0.2 \times 0.3$	$0.2 \times 0.2 \times 0.3$	
θ range for data collection (°)	51.1-57.0	48.5-55.0	42.3-54.1	
Index ranges for data collection				
Reflections collected	1750	1784	1720	
Independent reflections	1633(Rint = 0.059)			
Refinement method	Full-ma	trix least-squares on F ²		
Goodness of fit indicator	2.77	1.54	2.07	
Final R indices $[I > 2\sigma(I)]$				
<i>R</i> 1	0.043	0.035	0.047	
wR2	0.036	0.031	0.038	
Largest diff. peak and hole (e \mathring{A}^{-3})	0.15 and -0.29	0.12 and -0.11	0.25 and -0.2	

group in all of these phospha sugar derivatives are established by the downfield chemical shifts of the H-2 and H-4 signals compared with previous reports [9]. The α -orientation of C-1 is derived by considering the small magnitudes of $J_{1,2}(2.7-3.8\,\mathrm{Hz})$ and $J_{1,5e}$ (2.2–2.5 Hz) values of **5b** and **7b**,

whereas the β -anomers **5a** and **7a** show large $J_{1,2}$ (10.0–11.1 Hz) and negligible $J_{1,5e}$ values. The coupling constants of $J_{2,3}$ and $J_{3,4}$ of compounds **5** and **9** showed small Hz (2.2–4.5 Hz), and $J_{2,3}$ and $J_{3,4}$ of compounds **7** showed large Hz (9.2–10.5 Hz).

Table 3 Selected torsion angles for **5b**, **7b**, and **9b**

Sequence	5b	7b	9b	
	Angle (degrees)	Angle (degrees)	Angle (degrees)	
C-1-C-2-C-3-C-4	-58.0	-58.1	-68.4	
C-2-C-3-C-4-C-5	-57.5	59.2	64.1	
P-1-C-5-C-4-C-3	-60.8	-62.8	-61.6	
C-1-P-1-C-5-C-4	57.1	57.0	55.4	
P-1-C-1-C-2-C-3	59.7	57.9	66.6	
O-1-P-1-C-6-C-7	-60.7	-57.9	-31.8	
O-1-P-1-C-5-C-4	-60.8	-60.2	-65.7	
O-1-P-1-C-6-C-8	-58.4	65.2	146.6 ^a	
O-4-C-3-C-4-O-5	-68.0	61.3	62.3	
O-5-C-4-C-3-C-2	175.6	-179.1	-177.4	
O-3-C-2-C-3-O-4	63.3	-63.8	-64.0	
O-2-C-1-C-2-O-3	60.6	62.9	-56.4	
O-2-C-1-P-1-C-6	49.8	-46.8	74.3	

^a The torsion angle 146.6 degree is that of O-1–P-1–C-6–C-11.

Table 4
Bond lengths (Å) for compound 5b, 7b, and 9b

5b			7b	9b		
Atoms	Bond lengths	Atoms	Bond lengths	Atoms	Bond lengths	
P-1-O-1	1.499(4)	P-1-O-1	1.479(4)	P-1-O-1	1.486(5)	
P-1-C-5	1.813(7)	P-1-C-5	1.801(6)	P-1-C-5	1.815(7)	
O-2-C-1	1.444(7)	O-2-C-1	1.437(6)	O-2-C-1	1.443(7)	
O-3-C-2	1.449(8)	O-3-C-2	1.443(6)	O-3-C-2	1.454(8)	
O-4-C-3	1.455(7)	O-4-C-3	1.435(6)	O-4-C-3	1.416(8)	
O-5-C-4	1.429(7)	O-5-C-4	1.443(5)	O-5-C-4	1.430(8)	
O-6-C-11	1.211(8)	O-6-C-9	1.187(6)	O-6-C-12	1.19(1)	
O-10-C-9	1.173(9)	O-8-C-12	1.175(6)	O-27-C-15	1.204(9)	
C-1-C-2	1.504(9)	C-1-C-2	1.512(6)	C-6-C-7	1.381(1)	
C-2-C-3	1.510(8)	C-2-C-3	1.514(6)	C-7-C-8	1.37(1)	
C-3-C-4	1.524(9)	C-3-C-4	1.523(7)	C-8-C-9	1.41(1)	
C-4-C-5	1.523(9)	C-4-C-5	1.509(8)	C-9-C-10	1.37(1)	
C-6-C-7	1.51(1)	C-6-C-7	1.516(1)	C-10-C-11	1.40(1)	
P-1-C-1	1.849(7)	C-10-C-11	1.483(8)	C-15-C-16	1.49(1)	
P-1-C-6	1.806(7)	C-12-C-16	1.507(9)	C-17-C-18	1.51(1)	
O-2-C-9	1.389(8)	P-1-C-1	1.828(5)	P-1-C-1	1.834(7)	
O-3-C-11	1.334(8)	P-1-C-6	1.816(7)	P-1-C-6	1.808(7)	
O-4-C-13	1.349(8)	O-2-C-9	1.355(6)	O-2-C-17	1.365(8)	
O-5-C-15	1.321(7)	O-3-C-12	1.337(6)	O-3-C-15	1.349(8)	
O-9-C-15	1.207(7)	O-4-C-10	1.355(6)	O-4-C-14	1.424(1)	
O-11-C-13	1.207(9)	O-5-C-13	1.324(7)	O-5-C-12	1.350(9)	
C-6-C-8	1.53(1)	O-7-C-10	1.185(6)	O-7-C-17	1.189(8)	
C-9-C-10	1.52(1)	O-9-C-13	1.188(7)	C-1-C-2	1.527(8)	
C-11-C-12	1.48(1)	C-6-C-8	1.509(1)	C-2-C-3	1.527(9)	
C-13-C-14	1.50(1)	C-9-C-15	1.493(9)	C-3-C-4	1.498(1)	
C-15-C-16	1.46(1)	C-13-C-14	1.486(9)	C-4-C-5	1.574(1)	
C6-C11	1.395(9)		. ,		. ,	
C12-C13	1.48(1)					

These tentative stereochemical conclusions promoted us to carry out X-ray crystallographic analyses of 5a, 7b, and 9b. Rod-shaped crystals of 5a, 7b, and 9b were grown from ethyl acetate-hexane. Precise lattice constants and three dimensional intensity data were obtained by a RIGAKU AFC7R controlled Stoe four-circle diffractometer with Ni-filtered CuK $_{\alpha}$ radiation. A summary of the

crystallographic data, selected torsion angles, and bond lengths are shown in Tables 2–4, respectively. Phase determination was made by a direct method (SHELXS) [15] and expanded using Fourier techniques [16]. ORTEP plots for compounds **5a**, **7b**, and **9b** are shown by Figs 1–3, respectively. As indicated by the ring torsion angles given in Table 3, the pyranoid rings of **5a**, **7b**, and **9b** have a

Fig. 1. ORTEP plot for compound 5b.

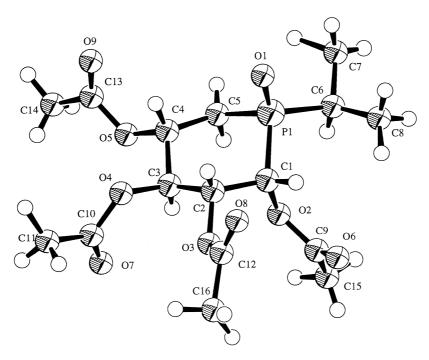


Fig. 2. ORTEP plot for compound 7b.

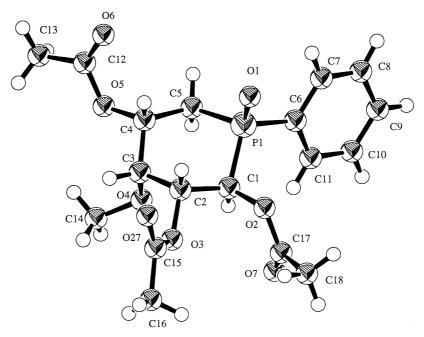


Fig. 3. ORTEP plot for compound 9b.

rather regular 4C_1 conformation. As Figs 1–3 show, compounds **5b** and **7b** are 1,2,3,4-tetra-Oacetyl-5-deoxy-5-C-[(R)-isopropylphosphinyl]- β -Dribopyranose and 1,2,3,4-tetra-O-acetyl-5-deoxy-5-C-[(R)-isopropylphosphinyl]- β -D-xylopyranose. These two pyranoses are in 4C_1 (D) conformation. In compound 7b, the substitutents at C2, C3, C4, and P link equatorially, while that at C-1 links axially. In compounds **5b** and **9b**, the substituents at C-2, C-4, and P link equatorially, and that at C-3 links axially. In these molecules, the acetoxy groups on C-1 to C-4 are in quasi-equatorial positions. The acetoxy groups on C-1 to C-4 have usual syn-parallel arrangement of the C=O bond with the C-H bond of the adjacent ring atom, and antiparallel arrangement of the P = O bond with the C-H bond of isopropyl group. On comparison of the present internal torsion angles of six membered ring of the sugar analogs 5a, 7b, and 9b observed by the X-ray crystallographic analyses with those of previous X-ray data for 5-deoxy-5-phosphinyl-D-glucopyranose derivatives, the present torsion angles of C-1-C-2-C-3-C-4 and P-1-C-1-C-2-C-3 are smaller than those of previous structures by ca. 2-7°, and the present torsion angles of P-1-C-5-C-4-C-3 and C-1-P-1-C-5-C-4 are larger than those of previous structures by ca. $2-3^{\circ}$ [11–14]. The Cremer-Pople [17] puckering parameters of $Q = 0.646 \text{Å}, \quad \theta = 9.778^{\circ}, \quad \Psi = 161.6^{\circ}$ 5b, $Q = 0.634 \text{Å}, \quad \theta = 10.6 \,^{\circ}, \quad \Psi = 10.0 \,^{\circ} \quad \text{for} \quad \textbf{7b}, \quad \text{and}$ $Q = 0.693 \text{Å}, \ \theta = 5.00 \,^{\circ}, \ \Psi = 27.9 \,^{\circ} \text{ for } 9\text{b}, \text{ respec-}$

tively. The deviation of C-1 and C-4 from the plane defined by C-2, C-3, C-5 and P are 0.769 and -0.689\AA for **5b**, 0.783 and -0.656\AA for **7b** and 0.732 and -0.718\AA for **9b**, respectively.

2. Experimental

Synthetic procedures employed in the present paper for all phosphorus containing sugar analogs were similar to those described in the previous papers [1–4]. ¹H NMR Spectra were measured in CDCl₃ (TMS as the internal standard) on a JASCO EX270 (270 MHz) spectrometer. X-Ray single crystallographic measurements were conducted on a RIGAKU AFC7R using cut crystals of size $(0.2 \times 0.2 \times 0.3 \text{ mm})$. Phase determination was made by a direct method (SHELXS) [15] and expanded using Fourier techniques [16]. After convergence of all parameters, final R values of 3.8% for **5b**, 4.3% for **7b**, and 4.7% for **9a** were obtained, respectively. In the final stage, refinement was made with anisotropic temperature-factors for all non-hydrogen atoms. The methyl hydrogen atoms were left unrefined.

Acknowledgement

The authors wish to express their thanks to Professor Y. Kobuke's laboratory of Shizuoka University for providing facilities for measurement of the ¹H NMR (270 MHz).

References

- [1] K. Seo, Carbohydr. Res., 123 (1983) 201.
- [2] K. Seo, Carbohydr. Res., 124 (1983) 156.
- [3] K. Seo, Carbohydr. Res., 125 (1984) 172.
- [4] K. Seo, Carbohydr. Res., 122 (1983) 81.
- [5] H. Yamamoto, T. Hanaya, H. Kawamoto and S. Inokawa, J. Org. Chem., 53 (1988) 4790–4793.
- [6] H. Yamamoto, K. Yamamoto, S. Inokawa, M. Yamashita, M.-A. Armour and T.T. Nakashima, Carbohydr. Res., 102 (1982) C1–C3; H. Yamamoto, H. Murata, S. Inokawa, M. Yamashita, M.-A. Armour and T. Nakashima, Carbohydr. Res., 133 (1984) 45–51.
- [7] H. Yamamoto and S. Inokawa, *Adv. Carbohydr. Chem. Biochem.*, 42 (1984) 135–191.
- [8] H. Yamamoto, T. Hanaya, N. Shigetoh, H. Kawamoto and S. Inokawa, *Chem. Lett.*, (1987) 2081–2084; T. Hanaya, N. Shigetoh and H. Yamamoto, *Bull. Chem. Soc. Jpn.*, 61 (1988) 2496–2505; H. Yamamoto, A. Noguchi, K. Torii, K. Ohono, T. Hanaya, H. Kawamoto and S. Inokawa, *Chem. Lett.*, (1988) 1575–1576.

- [9] H. Yamamoto, T. Hanaya, H. Kawamoto, S. Inokawa, M. Yamashita, M.-A. Armour and T.Nakashima, J. Org. Chem., 50 (1985) 3516– 3521.
- [10] P. Lugar, M. Yamashita and S. Inokawa, *Carbohydr. Res.*, 84 (1980) 25–33.
- [11] S. Inokawa, K. Yamamoto. H. Kawamoto, H. Yamamoto, M. Yamashita and P. Lugar, *Carbohydr. Res.*, 106 (1982) 31–42.
- [12] H. Yamamoto, K. Yamashita, S. Inokawa and P. Lugar, *Carbohydr. Res.*, 113 (1983) 31–43.
- [13] P. Lugar, H. Yamamoto and S. Inokawa, Carbohvdr. Res., 110 (1982) 187–194.
- [14] P. Lugar, E. Muller, H. Yamamoto and S. Inokawa, *Carbohydr. Res.*, 145 (1985) 25–35.
- [15] G.M. Sheldrick, In C. Kruger and R. Goddard (Eds.) *Crystallographic Computing* 3, Oxford University Press, 1985, pp. 175–189.
- [16] P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcis-Granda, R.O. Gould, J.M.M. Smits and C. Smykalla. The DIRDIF program system, technical report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1992.
- [17] D. Cremer and J.A. Pople, *J. Am. Chem. Soc.*, 97 (1975) 1354–1358.